PyFrag Documentation
Release 0.1.0

X. Sun

Apr 13, 2023

CONTENTS

1 PyFrag 2019 3
1.1 NOTICE(October 28 2021) o e 3
1.2 Motivation e e e e e e e e e e e 3
1.3 Description e e e 3
2 Installation 7
2.1 Activation Strain Analysis (ASA) Module of PyFrag 2019 7
2.2 The Complete PyFrag 2019 Package e 7
3 Basic Usage Tutorial 9
3.1 Usage 9
3.2 Sample Input Example e e e e e e e e 10
3.3 Resultexample L e e e e e e e 13
4 Main Specifications 15
5 Simple Pyfrag Calculation 19
5.1 ADF . o 19
52 Gaussianol e e e 21
53 OrCa e 23
54 Turbomole e 24
6 Special Pyfrag Calculation 25
6.1 Open Shell ASA e e e e e e 25
6.2 New Open Shell ASA (Since ADF2019) e 29
6.3 Open Shell ASA Orbital Energy o e 31
6.4 Single Points 32
7 Further Reading 35
7.1 Whole Time Monitor o e e e e e e e e 35
8 Further Information 37
8.1 History of PyFrag e e 37
8.2 Activation Strain Modelo 38
9 Code Structure 39
10 Indices and tables 41

PyFrag Documentation, Release 0.1.0

Contents:

CONTENTS 1

https://travis-ci.org/sunxb05/PyFrag

PyFrag Documentation, Release 0.1.0

2 CONTENTS

CHAPTER
ONE

PYFRAG 2019

See documentation for tutorials and documentation.

1.1 NOTICE(October 28 2021)

Since ADF2019, the ADF has been reconfigured and renamed as AMS2020 and AMS2021. Accordingly the format
of input has also changed a lot. PyFrag has now been updated as well to be compatible with these changes. Old users
can delete old version and reinstall the new version. If user still chooses ADF2019 or older version of ADF as the
computational engine, one can use the command pyfrag -x adfold job.in to invoke PyFrag.

1.2 Motivation

The PyFrag 2019 program was specially designed to facilitate the analysis of reaction mechanism in a more efficient
and user-friendly way. The original PyFrag 2008 workflow facilitated the characterization of reaction mechanisms in
terms of the intrinsic properties, such as strain and interaction, of the reactants. This approach is routinely applied in the
Bickelhaupt Group to understand numerous organic, inorganic, and biomolecular reactions/processes. The new PyFrag
2019 program has automated and reduced the time-consuming and laborious task of setting up, running, analyzing,
and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019 resolves three main
challenges associated with the automatized computational exploration of reaction mechanisms: 1) the management
of multiple parallel calculations to automatically find a reaction path; 2) the monitoring of the entire computational
process along with the extraction and plotting of relevant information from large amounts of data; and 3) the analysis
and presentation of these data in a clear and informative way. The activation strain and canonical energy decomposi-
tion results that are generated, relate the characteristics of the reaction profile in terms of intrinsic properties (strain,
interaction, orbital overlaps, orbital energies, populations) of the reactant species.

1.3 Description

1.3.1 Usage

In order to see all the commands that can be used in this program, the user can type pyfrag -h, which will show:

Usage: pyfrag [-h] [-s] [-x command] T[...]
- : print this information
-s : run job quietly
-X : start the executable named command
: command include restart, which restart job

(continues on next page)

https://pyfragdocument.readthedocs.io/en/latest/includeme.html
http://www.few.vu.nl/~xsn800/Home.html
http://www.few.vu.nl/~bickel/

PyFrag Documentation, Release 0.1.0

(continued from previous page)

: restart, which restart a job after it is stoped
: summary, which summarize all job result after jobs finished
: default command is pyfrag itself
The example command is like as follow, in which job.in is job input
pyfrag job.in
or
pyfrag -x restart job.in
or
pyfrag -s -x summary job.in

1.3.2 Input example

A simple job input is provided below. The input script can be roughly divided into four section: the required submit
information for a job scheduling system (Slurm in this example), ADF parameters, pyfrag parameters, and geometry
parameters. Additional information about the input file can be found in input explanation and main specifications in
the following webpages.

JOBSUB

#!/bin/bash

#SBATCH -] frag_1

#SBATCH -N 1

#SBATCH -t 50:00

#SBATCH --ntasks-per-node=24
#SBATCH --partition=short
#SBATCH --output=%job.stdout
#SBATCH --error=%job.stdout
export NSCM=24

JOBSUB END
ADF

basis

type TZ2P
core Small
end

xC
gga OPBE
end

relativistic SCALAR ZORA
scf

iterations 299

converge 0.00001

mixing 0.20

end

numericalquality verygood

(continues on next page)

4 Chapter 1. PyFrag 2019

https://pyfragdocument.readthedocs.io/en/latest/interactive_tutorial.html
https://pyfragdocument.readthedocs.io/en/latest/pyfragparameter.html

PyFrag Documentation, Release 0.1.0

charge 0 0
symmetry auto

ADF END
PyFrag

fragment 2

fragment 1 3 4 5 6
strain 0
strain -554.09

bondlength 1 6 1.09
PyFrag END
Geometrycoor

R1: Fe-II(CO)4 + CH4

Pd 0.00000000 0.00000000
R2: CH4

C 0.00000000 0.00000000

H -0.96181082 0.00000000

H 0.00000000 -0.90063254

H 0.00000000 0.90063254

H 0.96181082 0.00000000

RC: Fe-II(CO)4 + CH4

C 0.00000000 0.00000000

Pd 0.00000000 0.00000000
H -0.96181082 0.00000000

H 0.00000000 -0.90063254

H 0.00000000 0.90063254

H 0.96181082 0.00000000

TS: Fe-II(CO)4 + CH4

C -1.74196777 -2.22087997

Pd -2.13750904 -0.23784341

H -2.80956968 -2.49954731

H -1.26528821 -2.62993236

H -1.26528821 -2.62993236

H -0.75509932 -0.88569836

P: Fe-II(CO)4 + CH4

C -2.10134690 -2.41901732

Pd -2.73145901 -0.57025833
H -3.88639130 -1.04648079

H -2.78392696 -3.12497645

H -1.97386865 -2.66955518

H -1.12556673 -2.41201402

Geometrycoor END

0.32205546

-1.93543634
-1.33610429
-2.55201285
-2.55201285
-1.33610429

-1.93543615
0.322055
-1.33610429
-2.55201285
-2.55201285
-1.33610429

.00000000
.00000000
.00000000
.8956767
.895676
.00000000

(= I — I — I — R —]

0.1862099
0.419766
-0.43099501
0.66994616
-0.87144525
0.698583

(continued from previous page)

1.3. Description

PyFrag Documentation, Release 0.1.0

1.3.3 Result example

After the job has been submitted, a website as provided in the figure below will be launched that summarizes all
relevant information, including: a) the convergence information, b) the latest structure from the optimization in the
form of movie, c) the latest energy and coordinates, and d) the activation strain analysis (if a job is finished). The user
can decide if the trend of optimization is right or wrong, and if necessary, the job can be stopped. If the input file has
been modified, the job will be resubmitted and the overall workflow will resume from where it stopped before.

a) Current Job Status

b) Movies of Job Process

ts
step E e e_ e TF c_max c_max_ gm_TF
0 -502.34 -0.874630 0.001 F 0.000285 0.00001 F
1 -508.03 0.000004 0.001 T 0.000995 0.00001 F
2 -518.38 0.000004 0.001 T 0.000062 0.00001 F L /
3 -537.59 0.000001 0.001 T 0.000016 0.00001 F C
4 -548.84 0.000000 0.001 T 0.000009 0.00001 T R1 geometry TS geometry
-510
s L
2 .520
® \
-540 C
0 > 3 RC geometry P geometry
Steps
€) Summary of latest coordinates and other information d) Activation Strain Analysis
60
Geometry (cartesian) and Energy (kcal/mol TAE AE_int -
ry () gy () 201 i AE o -
R1.xyz, -554.0858 AE_strain 40| — AE_Pauli
10 AV_elstat
1.C 0.00000000 0.00000000 0.00000000 L
2 20
2.H 0.63276400 -0.63276400 0.63276400 = 0
o
x
3.H -0.63276400 -0.63276400 -0.63276400 3 - 0
Yoo ——
4.H -0.63276400 0.63276400 0.63276400) ——
-20 —
5.H 0.63276400 0.63276400 -0.63276400 -20 T~
Pxyz, -552.4892 %0 40 T~
1.C -2.10134690 -2.41901732 0.18620613 0102 03 04 o1 02 03 04
Bond stretch / A Bond stretch /A

2.Pd -2.73145901 -0.57025833 0.41934115

1.3.4 Installation

For installation, please read installation.

Chapter 1. PyFrag 2019

https://pyfragdocument.readthedocs.io/en/latest/install.html

CHAPTER
TWO

INSTALLATION

2.1 Activation Strain Analysis (ASA) Module of PyFrag 2019

The user may choose to only install the part of the program needed to perform the Activation Strain Analysis (ASA)
based on Activation Strain Model (ASM). Note that Python3 is needed to run this program. The ASA can be performed
using a variety of quantum chemical software packages, including: ADF, Gaussian, Orca and Turbomole, given a series
of coordinate from the potential energy surface is provided.

To install the ASA module of PyFrag 2019, the user must complete the following step. Go to your host machine
(supercomputer or cluster), open a terminal and run the following command:

curl -L -o install_alone.sh https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/
install_alone.sh

bash install_alone.sh

To run a simple test, open a terminal window on your host machine, make a directory, enter into that directory and run
the following command to download the job input file (job.in) and coordinate file (molecule.xyz):

curl -L -o job.in https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/host/
standalone/adf_new/example/job.in

curl -L -o molecule.xyz https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/host/
standalone/adf_new/example/molecule.xyz

Change the ircpath and the submit information, such as the number of nodes and wall time, located in job.in using vim
or any other text editor according to your situation, and run:

pyfrag job.in

The user can also download the module for either ADF, Gaussian, Orca, and Turbomole separately from PyFrag stan-
dalone and run it as a normal python code in your laptop or desktop. An input sample is provided in the example folder
along with the source code file.

2.2 The Complete PyFrag 2019 Package

The entire PyFrag 2019 package is only compatible with ADF at the moment. . For optimal use of PyFrag 2019, one
part of the program is installed on the users’ local machine and the second part is installed on the users’ host machine
(supercomputer or cluster) where the heavy computational jobs is running. The user must ensure to transport their
public key to your host machine to allow the communication between your local and host machine. The following
installation bash script (install_local.sh, install_host.sh) is was designed to make the installation process as simple as
possible. However, for the advanced user, if a different configuration of the program is desired, please read the detailed
comments in the installation bash script and set up the program accordingly. To install and test PyFrag 2019, the user
must perform the following three steps:

https://www.scm.com
http://gaussian.com
http://www.orcahome.de/orcanews.htm
http://www.turbomole.com
https://github.com/TheoChem-VU/PyFrag/tree/master/host/standalone
https://github.com/TheoChem-VU/PyFrag/tree/master/host/standalone

PyFrag Documentation, Release 0.1.0

1) Go to your local machine (your laptop or desktop), open a terminal window and run the following command on
your terminal:

xcode-select --install

curl -L -o install_local.sh https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/
install_local.sh

bash install_local.sh
2) Go to your host machine (supercomputer or cluster), open a terminal window and run the following command:

curl -L -o install_host.sh https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/
install_host.sh

bash install_host.sh

3) Open a terminal window on your local machine, make a directory, enter into that directory and run the following
command:

curl -L -o job.in https://raw.githubusercontent.com/TheoChem-VU/PyFrag/master/example/
job.in

Change the submit information, such as the number of nodes and wall time, located in job.in using vim or any other
text editor, and run:

pyfrag job.in

To obtain the latest information about your job, the user can run:

pyfrag -x summary job.in

8 Chapter 2. Installation

CHAPTER
THREE

BASIC USAGE TUTORIAL

3.1 Usage

The user can type pyfrag -h to see all the commands that can be used in this program, which will show:

Usage: pyfrag [-h] [-s] [-x command] [...]

-h : print this information
-s : run job quietly
-X : start the executable named command

: command include restart, which restart job
: restart, which restart a job after it is stoped
: summary, which summarize all job result after jobs finished
: default command is pyfrag itself
The example command is like as follow, in which job.in is job input
pyfrag job.in
or
pyfrag -x restart job.in
or
pyfrag -s -x summary job.in

To submit a job, create a directory and generate a input file and run the following command to submit a job. Note for
each job, a new directory and a new job name should be given. Note: The user should avoid running more than one
job in a single directory.

pyfrag job.in

To obtain the latest information about your job, the user can run:

pyfrag -x summary job.in

If a change in the input file is required, make the change and the resubmit the job using:

pyfrag -x restart job.in

PyFrag Documentation, Release 0.1.0

3.2 Sample Input Example

A simple job input is provided below. The input script can be roughly divided into four section: the required sub-
mit information for a job scheduling system (Slurm in this example), ADF parameters, PyFrag 2019 parameters, and
geometry parameters.

"

JOBSUB section is for the information passed to the remote host machine
where the heavy computational job is done! It is written in the fashion of Slurm.

"y

JOBSUB

#!/bin/bash

#SBATCH -] frag_1

#SBATCH -N 1

#SBATCH -t 50:00

#SBATCH --ntasks-per-node=24
#SBATCH --partition=short
#SBATCH --output=%job.stdout
#SBATCH --error=%job.stdout
export NSCM=24

JOBSUB END

"

Provide the parameters for a DFT calculation using ADF software.

"y

ADF

basis

type TZ2P
core Small
end

XC
gga OPBE
end

relativistic SCALAR ZORA

scf

iterations 299
converge 0.00001
mixing 0.20

end

numericalquality verygood
charge 0 0

symmetry auto

ADF END

(continues on next page)

10 Chapter 3. Basic Usage Tutorial

PyFrag Documentation, Release 0.1.0

"

(continued from previous page)

Provide the parameters for an activation strain analysis.
Noted a bondlength calculation is needed to provilde x axis value for ASA.

"y

PyFrag

fragment 2

fragment 1 3 4 5 6
strain 0

strain -554.09
bondlength 1 6 1.09

PyFrag END

"

Guessed geometry coordinate for reactentl, reactent2, reactent complex,
transition state and product.

"y

Geometrycoor

R1: Fe-II(CO)4 + CH4

Pd 0.00000000

R2: CH4

C 0.00000000 0.
H -0.96181082 0.
H 0.00000000 -0.
H 0.00000000 0.
H 0.96181082 0.
RC: Fe-II(CO)4 + CH4

C 0.00000000 0.
Pd 0.00000000

H -0.96181082 0.
H 0.00000000 -0.
H 0.00000000 0.
H 0.96181082 0.
TS: Fe-II(CO)4 + CH4

C -1.74196777 -2.
Pd -2.13750904 -0.
H -2.80956968 -2
H -1.26528821 -2.
H -1.26528821 -2.
H -0.75509932 -0.
P: Fe-II(CO)4 + CH4

C -2.10134690 -2.

0.00000000

00000000
00000000
90063254
90063254
00000000

00000000

0.00000000

00000000
90063254
90063254
00000000

22087997
23784341

.49954731

62993236
62993236
88569836

41901732

0.32205546

-1.
=g
=2
=2 g
-1.

=g

93543634
33610429
55201285
55201285
33610429

93543615

0.322055

-1.
-2.
=R o
=g

(= — N —]

33610429
55201285
55201285
33610429

.00000000
.00000000
.00000000
.8956767
.895676
.00000000

.1862099

(continues on next page)

3.2. Sample Input Example

11

PyFrag Documentation, Release 0.1.0

(continued from previous page)

Pd -2.73145901 -0.57025833 0.419766
H -3.88639130 -1.04648079 -0.43099501
H -2.78392696 -3.12497645 0.66994616
H -1.97386865 -2.66955518 -0.87144525
H -1.12556673 -2.41201402 0.698583

Geometrycoor END

The user might want to specify an additional input for the different sections of the overall workflow. To specify addi-
tional information for say, fragment] and fragment2 see the syntax shown below. Additional complex insert statements
for the fragment analysis calculation can be added. Similarly, the R1 EXTRA, R2 EXTRA, RC EXTRA, TS EXTRA,
P EXTRA, IR EXTRA insert statements for R1, R2, RC, TS, P, IRC calculation.

fragmentl EXTRA
charge 1
fragmentl EXTRA END

fragment2 EXTRA
charge -1
fragment2 EXTRA END

complex EXTRA
charge 2
complex EXTRA END

R1 EXTRA
charge 0
R1 EXTRA END

R2 EXTRA
charge 0
R2 EXTRA END

RC EXTRA
charge 0
RC EXTRA END

TS EXTRA
charge 0
tsrc

Bond 1 2 -1
end

TS EXTRA END

P EXTRA
charge 0
P EXTRA END

IR EXTRA
Geometry

IRC Backward POINTS=20 STEP=1
ITERATIONS 300

(continues on next page)

12 Chapter 3. Basic Usage Tutorial

PyFrag Documentation, Release 0.1.0

CONVERGE 0.000001
End
IR EXTRA END

3.3 Result example

(continued from previous page)

After the job has been submitted, a website as shown in the figure below will be launched. The website summarizes
all relevant information, including: a) the convergence criteria, b) the latest structure from the optimization in the form
of movie, c) the latest energy and coordinates, and d) the activation strain analysis (once the complete workflow has
finished). The user can decide if the optimization process is correct or incorrect, and if necessary, can stop the job. If
the input file is then modified or updated, the job will be resubmitted and the overall workflow will resume from where

it left off.
a) Current Job Status b) Movies of Job Process
ts
step E e e e TF c_max c_max_ gm TF
0 -502.34 -0.874630 0.001 F 0.000285 0.00001 F
1 -508.03 0.000004 0.001 T 0.000995 0.00001 F
2 -518.38 0.000004 0.001 T 0.000062 0.00001 F L /
3 -537.59 0.000001 0.001 T 0.000016 0.00001 F C
4 -548.84 0.000000 0.001 T 0.000009 0.00001 T R1 geometry TS geometry
-510 ‘ '
s
2 -520
K ° ‘ d
£
= /b\ ©
-540 C
0 1 2 3 RC geometry P geometry
Steps
€¢) Summary of latest coordinates and other information d) Activation Strain Analysis
60
Geometry (cartesian) and Energy (kcal/mol, TAE —AE_int _
ry () gy () 200 vt P
R1.xyz, -554.0858 AE_strain 401{ —AE_Pauli
10 AV_elstat
1.C 0.00000000 0.00000000 0.00000000 L
£ 20
2.H 0.63276400 -0.63276400 0.63276400 =
o
x
3.H -0.63276400 -0.63276400 -0.63276400 Sago] — 0
Ggo|
4.H -0.63276400 0.63276400 0.63276400) Sy
-20 —
5.H 0.63276400 0.63276400 -0.63276400 20 ~——
Pxyz, -552.4892 20 -0 ~
1.C -2.10134690 -2.41901732 0.18620613 o1 02 03 04 05 o1 02 03 04
Bond stretch/ A Bond stretch / A
2.Pd -2.73145901 -0.57025833 0.41934115
3.3. Result example 13

PyFrag Documentation, Release 0.1.0

14 Chapter 3. Basic Usage Tutorial

CHAPTER
FOUR

MAIN SPECIFICATIONS

The user can print additional information in the final activation strain analysis by adding the following specifications
between the PyFrag and PyFrag END in the job input.

These following statements allow the user to define the fragments in the analysis. For each of the fragments you supply
a list of the numbers for the atoms as they exist in the supplied XYZ coordinate file of the reaction path from an IRC or
LT calculation. The program will check if they match with the order in the supplied XYZ coordinate file of the reaction
path from an IRC or LT calculation. If the atom ordering is incorrect, a statement will be printed in the error log.

fragment atomnrs
for example:

fragment 2
fragment 1 3 4 56

The following possibilities are optional. The user can choose what information to print during the Activation Strain
Analysis (ASA). For instance, the user can specify to print the strain energy for the fragments. Or one can specify
the equilibrium energies (in kcal/mol) for the fragments. Beware that the order of this specification should correspond
to the order of the fragment definition. This value will then simply be subtracted from the energy of the fragment in
question. The program will print the individual strain values for each fragment, plus the total strain and total energy.

strain fragenergy
for example:

strain -301.01
strain -19.02

To specify the bond length to be printed for each geometry step, the user needs to indicate the atom numbers as they
appear in the input order of the total molecule. Specifying bond_diff as well subtracts this value from the actual bond
length.

bondlength atomnrl atomnr2 bond-diff

To specify the angle between atoms 1, 2, and 3 to be printed for each geometry step, just indicate the atom numbers as
they appear in the input order of the total molecule. Specifying angle_diff as well subtracts this value from the actual
angle.

angle atomnrl atomnr2 atomnr3 angle-diff

The following statement will print the Hirshfeld charges for the fragment. Note that the order of the fragments as used
internally by ADF may differ from what you would expect. Note also that Hirshfeld charges as computed in a fragment

15

PyFrag Documentation, Release 0.1.0

analysis differ from those obtained in a ‘normal’ calculation from basic (spherical average-of configurations) ADF
atoms like simple single point calculations.

hirshfeld fragl

The following statement will print the VDD charges on the atoms with numbers as given by atomnrs. Note also that
VDD charges as computed in a fragment analysis differ from those obtained in a ‘normal’ calculation from basic
(spherical average-of configurations) atoms like single point calculation.

VDD atomnrs
for example:
VDD 1 2

The following statement will print the orbital interaction energy per available irrep. The irrep symbol relates to the
symmetry of the whole molecule.

irrepOI oi irrep
for example:
irrepOI AA

The following statement will print the overlap between orbital numbers orb1 on fragl and orb2 on frag2 in irrep as they
appear in the fragment analysis calculation. It can also print the overlap between the HOMOs of fragment 1 (fragl)
and the LUMOs of fragment 2 (orbitals as found on the fragment calculations). If the orbitals found in this way differ
in symmetry, an orbital overlap value of zero is returned. It should be noted that irrep and orbital number refers to
each fragment, rather than the whole molecule. Especially, when it comes to frozen core situation, the count of orbital
number should not include core orbitals. This rule also applies to the situation of printing orbital energy and population
for orbitals of certain fragment.

overlap fragl HOMO/LUMO frag2 HOMO/LUMO
overlap irrepl fragl orbl irrp2 frag2 orb2

for example:

overlap fragl HOMO frag2 LUMO
overlap fragl HOMO-1 frag2 LUMO+3
overlap S fragl 5 AA frag2 4

The following statement will print the orbital energy for a fragment orbital per available irrep. The irrep symbol relates
to the symmetry of the fragment.

orbitalenergy frag HOMO/LUMO
orbitalenergy irrep frag orb

for example:

orbitalenergy fragl HOMO
orbitalenergy fragl HOMO-2
orbitalenergy AA frag2 5

The following statement will print the gross Mulliken population for a fragment orbital.

16 Chapter 4. Main Specifications

PyFrag Documentation, Release 0.1.0

population frag HOMO/LUMO
population irrep frag orb

for example:
population fragl HOMO

population frag2 HOMO-1
population AA frag2 5

17

PyFrag Documentation, Release 0.1.0

18 Chapter 4. Main Specifications

CHAPTER
FIVE

SIMPLE PYFRAG CALCULATION

The user may choose to only install the part of the program needed to perform the Activation Strain Analysis (ASA)
based on Activation Strain Model (ASM). The ASA can be performed using a variety of quantum chemical software
packages, including: ADF, Gaussian, Orca, and Turbomole. The user must only provide a series of coordinate from
the reaction path. An input sample is provided in the standalone example folder for either ADF, Gaussian, Orca and
Turbomole.

5.1 ADF

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using ADF is similar to the previous input
example, except the coordinate section:

JOBSUB

#!/bin/bash

#SBATCH -J NNC

#SBATCH -N 1

#SBATCH -t 24:00:00

#SBATCH --ntasks-per-node=24
#SBATCH --partition=normal
#SBATCH --output=%job.stdout
#SBATCH --error=%job.stdout
export NSCM=24

JOBSUB END

PyFrag

ircpath /home/x2sun/pyfragnew/test/molecule.xyz
fragment 2

fragment 1 3 4 5 6

strain 0

strain -554.09

bondlength 1 6 1.09

PyFrag END

ADF

basis

(continues on next page)

19

https://github.com/sunxb05/PyFrag/tree/master/host/standalone
https://www.scm.com
http://gaussian.com
http://www.orcahome.de/orcanews.htm
http://www.turbomole.com

PyFrag Documentation, Release 0.1.0

(continued from previous page)

type TZ2P
core Small
end

XC

gga OPBE
end

relativistic SCALAR ZORA

scf

iterations 299
converge 0.00001
mixing 0.20

end

numericalquality verygood

charge 0
symmetry auto

ADF END

The only difference compared with the previous job input is that the user must provide the path to a series of coordinates.
For additional specifications, the user can read the previous page. The user can specify the filename of a linear transit
(LT), scan, IRC, or a simple text output file you wish to analyze. Note: When using a TAPE21, the file should have the
.t21 extension. The user can specify two output files for an IRC TAPE21 (backward and forward). A text file containing
coordinates of an IRC calculation is also acceptable, for example, a text file generated by ADFmovie or Gaussian.

ircpath path/filename.xyz
irct21 path/filename.t21
1t path/filename.t21

To submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag job.in

If more terms needed to be printed, user can simply re-run the job as long as the plams directory exists. During the
process, PyFrag just extracts the new information from the previous result without actually doing new calculation. In
order to do that, the path to the plams directory should be specified in the job file in the PyFrag section, such as:

PyFrag
restartjob /path/to/plams/directory

ircpath /home/x2sun/pyfragnew/test/molecule.xyz
fragment 2

fragment 1 3 4 5 6

strain 0

strain -554.09

bondlength 1 6 1.09

PyFrag END

20 Chapter 5. Simple Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

To submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag job.in

5.2 Gaussian

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using Gaussian is as follows:

INPUT_SPECS
type = IRC
output file = Ethylene-forward.amv

fragl = C4H6

= 00 N O v i W=

3

14

end fragl
frag2 = C2H4
9

10

11

12

15

16

end frag2

print bond 1 9 1.384

print strain fragl 1000
print strain frag2 2000

END INPUT_SPECS

"g09" <<eor
%nprocs=16
%mem=14000mb
#0PBE/6-31G*

Comments

01
END INPUT

The first section between INPUT_SPECS and END INPUT_SPECS is used to define fragment and provide coordinate
path. The second section between END INPUT_SPECS and END INPUT is used to do Gaussian parameter set up.

5.2. Gaussian 21

PyFrag Documentation, Release 0.1.0

User can also specify different parameters for fragment 1, fragment 2 and tatol complex in the extra section such as

between EXTRA fragl and END EXTRA fragl using input example as below:

INPUT_SPECS
type = IRC

output file = Ethylene-forward.amv
fal_name = complex

fragl = C4H6
.C

0N VA WN R
== @ ==l e N == I W= =

=
w
==}

14.H

end fragl
frag2 = C2H4
9.C

10.C

11.H

12.H

15.H

16.H

end frag2

print bond 1 9 1.384
print strain fragl
print strain frag?2

END INPUT_SPECS
END INPUT

EXTRA fragl
"g09" <<eor
%nprocs=16
%mem=14000mb
#0OPBE/6-31G* -1
Comments

01

END EXTRA fragl

EXTRA frag2
"g09" <<eor

(continues on next page)

22

Chapter 5. Simple Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

%nprocs=16
%mem=14000mb
#0OPBE/6-31G* 0

Comments

01

END EXTRA frag2
EXTRA fa

"g09" <<eor
%nprocs=16
%mem=14000mb
#0PBE/6-31G* -1

Comments

01
END EXTRA fa

(continued from previous page)

To submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag -x gaussian job.in

5.3 Orca

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using Orca is as follows:

INPUT_SPECS

type = IRC

output file = irc.amv
fragl = H2

1

2

end fragl

frag2 = H2

3

4

end frag2

print bond 1 3 1.00
print strain fragl 100
print strain frag2 200
END INPUT_SPECS

I SP B3LYP 6-31G(d)

(continues on next page)

5.3. Orca

23

PyFrag Documentation, Release 0.1.0

(continued from previous page)
* xyz 0 1
END INPUT

The first section between INPUT_SPECS and END INPUT_SPECS is used to define fragment and provide coordinate
path. The second section between END INPUT_SPECS and END INPUT is used to do Orca parameter set up. To
submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag -x orca job.in

5.4 Turbomole

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using Turbomole is as follows:

INPUT_SPECS

type = IRC

output file = irc.amv
fragl = pd

1

2

end fragl

frag2 = cc

3

4

end frag2

print bond 1 3 1.00
print strain fragl 100
print strain frag2 200

END INPUT_SPECS

%method

ENRGY :: b-p/SVP [gen_stat=1,scf_msil=99,&
scf_grid=m4]

%charge

0

%coord

%end

END INPUT

The first section between INPUT_SPECS and END INPUT_SPECS is used to define fragment and provide coordinate
path. The second section between END INPUT_SPECS and END INPUT is used to do Turbomole parameter set up.
To submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag -x turbomole job.in

24 Chapter 5. Simple Pyfrag Calculation

CHAPTER
SIX

SPECIAL PYFRAG CALCULATION

Besides the above simple calculations, it is more complicated to perform an open shell Activation Strain Analysis
(ASA) using PyFrag 2019 for the technical reasons. For more information please check the example consisting of an
analysis of the C-C single bond between two CP radicals in the four-atomic molecule PCCP.

6.1 Open Shell ASA

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using ADF to perform an open shell Activation
Strain Analysis is as follow:

JOBSUB

#!/bin/bash

#SBATCH -J NNC

#SBATCH -N 1

#SBATCH -t 24:00:00

#SBATCH --ntasks-per-node=24
#SBATCH --partition=normal
#SBATCH --output=%job.stdout
#SBATCH --error=%job.stdout
export NSCM=24

JOBSUB END

PyFrag

ircpath /Users/xiaobo/Desktop/test/molecule.xyz
fragment 1 3 4 5

fragment 2 6 7 8

strain 0

strain 0

bondlength 1 2 1.52

PyFrag END
fragmentl EXTRA

SYMMETRY C(3V)
CHARGE 00

(continues on next page)

25

https://www.scm.com/doc/ADF/Examples/PCCP_Unr_BondEnergy.html?highlight=open+shell+fragment

PyFrag Documentation, Release 0.1.0

OCCUPATIONS
El 4
Al 5
END

fragmentl EXTRA END
fragment2 EXTRA

SYMMETRY C(3V)
CHARGE 00

OCCUPATIONS
El 4
Al 5
END

fragment2 EXTRA END
complex EXTRA
FRAGOCCUPATIONS
fragl

E1l 2//2

Al 3//2

SUBEND

frag2

El 2//2

Al 2//3

SUBEND

END

complex EXTRA END
fragmentl open EXTRA

charge 0 1
unrestricted

fragmentl open EXTRA END

fragment2 open EXTRA
charge 0 1
unrestricted

fragment2 open EXTRA END

complex open EXTRA
charge 0 0

complex open EXTRA END

(continued from previous page)

(continues on next page)

26

Chapter 6. Special Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

(continued from previous page)

ADF

basis
type DZ
core None
end

XC
gga OPBE
end

scf

iterations 99
converge 0.0001
mixing 0.20
end

numericalquality good

ADF END

To submit a job, create a directory and generate a input file and run the following command to submit a job:
pyfrag -x open job.in

In order to perform a successful open shell fragment analysis, additional information should be provided in the following
input blocks:

fragmentl EXTRA

SYMMETRY C(3V)
CHARGE 00

OCCUPATIONS
El 4
Al 5
END

fragmentl EXTRA END
fragment2 EXTRA

SYMMETRY C(3V)
CHARGE 00

OCCUPATIONS
El 4
Al 5
END

(continues on next page)

6.1. Open Shell ASA 27

PyFrag Documentation, Release 0.1.0

(continued from previous page)

fragment2 EXTRA END
complex EXTRA
FRAGOCCUPATIONS

fragl
El 2//2
Al 3//2
SUBEND

frag2

E1 2//2
Al 2//3
SUBEND

END
complex EXTRA END

The fragment calculations used to provide the TAPE21 for the overall complex calculation must be done, for technical
reasons, in the restricted mode. The proper spins are then specified in the calculation of the overall molecule using the
FragOccupations key. Noted a proper decomposition of an electron-pair bond energy requires specifying opposite spins
for the unpaired electrons of the respective radical fragments, which can be done with the input key FragOccupations.
For the convenience of the analysis, it is suggested to specify the electronic configuration according to the symmtry of
the molecule.

Please note that if one neglects explicitly specifying opposite spins for the unpaired electrons of the fragments, each
of them is treated as being half an alpha and half a beta electron and consequently, they enter into a spurious Pauli
repulsive interaction. This results, among others, into the Pauli repulsion term being too repulsive and the orbital
interaction term being too much stabilizing.

Note that this implies a slight approximation because the bond energy computed in this way refers to the energy differ-
ence between complex and two fragment radicals that are described by orbitals from a spin-restricted SCF calculation,
which have been given an unrestricted occupation. In other words, the set of alpha- and beta-spin orbitals are identical
and the effect of spin polarization is missing. In practice, this leads to minor energy differences with respect to the cor-
rect bond energy, that is, the energy difference between complex and two fragment radicals treated in the unrestricted
mode, i.e., for which the set of alpha- and beta-spin orbitals are allowed to relax toward different solutions in the SCF
procedure.

This correction term can be computed directly by carrying out an unrestricted computation of the fragment radical
using the following block:

fragmentl open EXTRA
charge 0 1

unrestricted

fragmentl open EXTRA END

fragment2 open EXTRA
charge 0 1

unrestricted

fragment2 open EXTRA END

complex open EXTRA
charge 0 0

(continues on next page)

28 Chapter 6. Special Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

(continued from previous page)

complex open EXTRA END

After the calculation, all results will be summarized in two text files. One file with the name started with pyfragl
include all terms obtained from the above open shell ASA.

The second file with the name started with pyfrag2 include the correction energy terms from the correction procedure
later.

6.2 New Open Shell ASA (Since ADF 2019)

Since ADF 2019, new method to do open-shell fragment analysis has been included. For details, please refer to the
ADF website.

Based on this method, a new module to do the activation strain analysis has been developed by Xiaobo Sun and Eva
Blokker. The specification for the print options is similar with the previous one, except to has to specify the spin state
of orbital, such as 1_A, which means spin-A orbital 1. All the following options are acceptable:

overlap fragl HOMO frag2 HOMO
overlap Al fragl 3_B S frag2 1_B

orbitalenergy fragl HOMO-2
orbitalenergy fragl HOMO-1
orbitalenergy fragl LUMO
orbitalenergy frag2 LUMO
orbitalenergy Al fragl 3_A

population fragl HOMO
population frag2 HOMO
population frag2 LUMO
population Al fragl 3_A
population S frag2 1_B

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using ADF 2019 to perform a new open shell
Activation Strain Analysis is as follow:

JOBSUB

#!/bin/bash

#SBATCH --nodes=1

#SBATCH --ntasks-per-node=16
#SBATCH --partition=tc
#SBATCH --time=24:00:00
#SBATCH --job-name=methane
#SBATCH --output=methane.out
#SBATCH --error=methane.err
module load adf/2019.301
JOBSUB END

ADF
XC

GGA BLYP

DISPERSION Grimme3 BJDAMP
END

(continues on next page)

6.2. New Open Shell ASA (Since ADF 2019) 29

https://www.scm.com/doc/ADF/Examples/EDA_Unr_CH3I.html#example-eda-unr-ch3i

PyFrag Documentation, Release 0.1.0

NumericalQuality Excellent

BASIS
TYPE TZ2P
CORE None
END

SCF
ITERATION
END

S 300

SYMMETRY AUTO

CHARGE 0
ADF END

PyFrag

ircpath /home/x2sun/methane.amv

fragment 1
fragment 5
strain

strain

bondlength
overlap Al
overlap Al
overlap Al
population
population
PyFrag END

0
0

2 34

15

fragl 3_A S frag2 1_A
fragl 3_B S frag2 1_B
fragl 2_B S frag2 1_B
fragl HOMO

frag2 HOMO

fragmentl EXTRA

SYMMETRY C(
CHARGE 0 1
unrestricte

3V)

d

IrrepOccupations

E1 2//2
Al 3//2
END

fragmentl EXTRA END

fragment2 EXTRA
SYMMETRY AUTO

CHARGE 0 -1
Unrestricte

d

IrrepOccupations

S 0//1
END

fragment2 EXTRA END

(continued from previous page)

(continues on next page)

30

Chapter 6. Special Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

(continued from previous page)

complex EXTRA
UnrestrictedFragments
unrestricted

complex EXTRA END

The molecule is methane:

C -0.88533700 -1.60854000 0.00000000
H -0.50220300 -2.11092900 0.89352900
H -0.50220300 -2.11092900 -0.89352900
H -1.97897100 -1.64799500 0.00000000
H -0.55799500 -0.56431300 0.00000000

To submit a job, create a directory and generate a input file and run the following command to submit a job:

pyfrag -x newopen job.in

6.3 Open Shell ASA Orbital Energy

Because the above open shell Activation Strain Analysis will not give the correct orbital energy of fragment, thus, in
order to extract the correct orbital energy, the following small calculation can be performed:

PyFrag

ircpath /Users/xiaobo/Desktop/test/plams.0001
fragment fraglopen

orbitalenergy HOMO

orbitalenergy HOMO-1

orbitalenergy LUMO

orbitalenergy LUMO+1

orbitalenergy AA 5

PyFrag END

The ircpath refer to the plams directory that contains all the open shell calculation results. Besides, the fragment term
specifies from which (fragmentlopen or fragmentlopen) orbital energy will be extracted. Noted only one fragment
informatin can be readed for one calculation.

To submit a job, create a directory and generate a input file and run the following command to run a job:

pyfrag -x openorb job.in

6.3. Open Shell ASA Orbital Energy 31

PyFrag Documentation, Release 0.1.0

6.4 Single Points

The basic PyFrag 2019 input for the Activation Strain Analysis (ASA) using ADF to do single point calculation for a
series of coordinates is as follows:

JOBSUB

#!/bin/bash

#SBATCH -J NNC

#SBATCH -N 1

#SBATCH -t 1:00:00

#SBATCH --ntasks-per-node=24
#SBATCH --partition=short
#SBATCH --output=%job.stdout
#SBATCH --error=%job.stdout
export NSCM=24

JOBSUB END
PyFrag
ircpath /Users/xiaobo/Desktop/testl/molecule.xyz

VDD 1 2 3
angle 1 2 3 90
bondlength 1 2 5

PyFrag END

ADF

basis
type DZ
core None
end

XC
gga OPBE
end

scf

iterations 99
converge 0.0001
mixing 0.20
end

numericalquality good

ADF END

Note that the fragment definations are not needed. This functionality provide an easy way to do a simple single point
calculation for a series of different molecular coordinates and get the computational results like VDD charges, total

32 Chapter 6. Special Pyfrag Calculation

PyFrag Documentation, Release 0.1.0

energy, bond length and angles. Use the following command to run this calculation:

pyfrag -x single job.in

6.4. Single Points 33

PyFrag Documentation, Release 0.1.0

34

Chapter 6. Special Pyfrag Calculation

CHAPTER
SEVEN

FURTHER READING

7.1 Whole Time Monitor

The user can monitor the entire calculation process by using this the following command:

pyfrag -x consist job.in

In this mode, periodically (default set is 20 seconds), new data will be collected and updated in the form of webpage.
In the meantime, if the original input is changed, a window will pop up to ask the user if they want to resubmit the job.
If the user agrees to restart the job, a new input file will be submitted and started again and all other previous data will
remain unchanged.

In this case, you need specify the time interval to check the new result in /pyfrag/.pyfragrc

export JOBCHECK="20"

and in the /pyfrag/util/configure.py

RESULTCHECK="20"

35

PyFrag Documentation, Release 0.1.0

36

Chapter 7. Further Reading

CHAPTER
EIGHT

FURTHER INFORMATION

8.1 History of PyFrag

PyFrag 2008

The original version of PyFrag 2008 was developed by Willem-Jan van Zeist, Lando P. Wolters, F. Matthias Bickelhaupt,
and Célia Fonseca Guerra at the Theoretical Chemistry Department at the Vrije Universiteit Amsterdam. PyFrag is
mainly used to enable a user-friendly analysis of reaction paths in terms of the Extended Activation Strain model of
chemical reactivity(ASM). The explanation and application can be found in the references below. For users still using
this version, additional useful information can be found on here or here for a more concise version. This version is no
longer maintained.

PyFrag 2016

The PyFrag 2016 program was rewritten by Xiaobo Sun and Thomas Soini using the PLAMS library in the ADF
package and has been included in the script collection in ADF 2017 and later version. Compared to the old PyFrag, the
new version is more compact and easy to be maintained, expanded and upgraded. Also, due to its high compatibility
with other python library tools developed by SCM, such as, PLAMS and QMworks, it can be used as a module in line
with these computational chemistry job management tools to streamline a large flow of job. For this version, description
can be found using this site.

PyFrag 2019

The PyFrag 2019 program was specially designed to facilitate the analysis of reaction mechanism in a more efficient
and user-friendly way. PyFrag 2019 has automated and reduced the time-consuming and laborious task of setting up,
running, analyzing, and visualizing computational data from reaction mechanism studies to a single job. PyFrag 2019
resolves three main challenges associated with the automatized computational exploration of reaction mechanisms: 1)
the management of multiple parallel calculations to automatically find a reaction path; 2) the monitoring of the entire
computational process along with the extraction and plotting of relevant information from large amounts of data; and
3) the analysis and presentation of these data in a clear and informative way. The activation strain and canonical energy
decomposition results that are generated, relate the characteristics of the reaction profile in terms of intrinsic properties
(strain, interaction, orbital overlaps, orbital energies, populations) of the reactant species.

37

http://www.few.vu.nl/~xsn800/Home.html
https://sunxb05.github.io/pyfragold/
https://www.scm.com/doc/ADF/Input/PyFrag.html
http://www.few.vu.nl/~bickel/page-2/pyfrag.html

PyFrag Documentation, Release 0.1.0

8.2 Activation Strain Model

For more information on the Activation Strain Model (ASM) of chemical reactivity, the user is directed to the references
provided below. An easy exercise for activation strain analysis of reaction mechanism using ADF is also included.

Literature

1 W.-J. van Zeist, C. Fonseca Guerra, F. M. Bickelhaupt, J. Comput. Chem. 2008, 29, 312-
- 315.

2 I. Fernandez, F. M. Bickelhaupt, Chem. Soc. Rev. 2014, 43, 4953-4967.

3 L. P. Wolters, F. M. Bickelhaupt, WIRES Comput. Mol. Sci. 2015, 5, 324-343.

4 F. M. Bickelhaupt, K. N. Houk Angew. Chem. 2017, 129, 10204-10221; Angew. Chem. Int..
—~Ed. 2017, 56, 10070-10086.

38 Chapter 8. Further Information

https://github.com/sunxb05/PyFrag/blob/master/docs/exerciseforPyFrag.docx

CHAPTER
NINE

CODE STRUCTURE

For the advanced users who are interested and want to contribute to the code,

please check Code Structure

39

https://pyfragdocument.readthedocs.io/en/latest/annotated.html

PyFrag Documentation, Release 0.1.0

40

Chapter 9. Code Structure

CHAPTER
TEN

INDICES AND TABLES

* genindex
* modindex

¢ search

41

	PyFrag 2019
	NOTICE(October 28 2021)
	Motivation
	Description
	Usage
	Input example
	Result example
	Installation

	Installation
	Activation Strain Analysis (ASA) Module of PyFrag 2019
	The Complete PyFrag 2019 Package

	Basic Usage Tutorial
	Usage
	Sample Input Example
	Result example

	Main Specifications
	Simple Pyfrag Calculation
	ADF
	Gaussian
	Orca
	Turbomole

	Special Pyfrag Calculation
	Open Shell ASA
	New Open Shell ASA (Since ADF 2019)
	Open Shell ASA Orbital Energy
	Single Points

	Further Reading
	Whole Time Monitor

	Further Information
	History of PyFrag
	Activation Strain Model

	Code Structure
	Indices and tables

